AC/DC: чем отличается переменный ток от постоянного?

Фото 1

Энергосистема строится на переменном токе, тогда как во многих бытовых приборах используется постоянный.

Налицо явное несоответствие: зачем-то генерируют ток одного типа, когда нужен совсем другой. Разобраться в этом вопросе поможет нижеприведенная статья, тема которой — постоянный и переменный ток: разница.

Что такое постоянный ток?

Фото 2Электрическим током называют движение заряженных частиц: в металлах — электронов, в электролитах — положительно и отрицательно заряженных ионов, в полупроводниках — электронов или дырок, в зависимости от типа проводимости.

Количество заряда, пересекающего поперечное сечение проводника за единицу времени, называют силой тока и измеряют в амперах.

В постоянном токе заряженные частицы движутся в одном направлении и при этом сила тока либо не меняется, либо меняется столь медленно, что индуктивность и емкость цепи (см. ниже) никак себя не проявляют.

Если ток направления не меняет, но его сила быстро трансформируется от некоего минимального значения до максимального и обратно, говорят о пульсирующем постоянном токе. Обычно он получается в результате выпрямления тока переменного.

Что такое переменный ток?

Переменный ток периодически меняет не только силу, но и направление движения носителей заряда. График изменения силы тока может быть ступенчатым или остроконечным, но в основном приходится иметь дело с током синусоидальным, то есть график изменения его силы имеет вид синусоиды. Именно такой ток вырабатывают генераторы электростанций.

Фото 3Причина синусоидальности состоит в том, что генерация электричества обеспечивается вращением источника магнитного поля (ротора) внутри обмотки (статора) и величина наведенной ЭДС, в соответствии с законом электромагнитной индукции, определяется формулой: Е = dФ * sin (wt), где dФ — изменение магнитного потока, w — угловая скорость вращения ротора, t — время. Произведение wt составляет угол поворота линии между полюсами относительно катушки обмотки статора, ЭДС которой рассматривается.

Силу переменного тока в данный момент времени называют мгновенным значением. Оно крайне неудобно для расчетов, поскольку постоянно меняется. Вместо мгновенного оперируют действующим значением — постоянным током, вызывающим в проводнике такое же выделение тепла, как и данный переменный.

Так же поступают с переменным напряжением. Говорят, к примеру, что в однофазной сети напряжение 220 В, тогда как на деле оно постоянно меняется от -311 В до +311 В. 220 В — это действующее значение. То есть сетевое переменное напряжение вызывает в проводнике выделение тепла той же мощности, какое вызывало бы постоянное напряжение в 220 В.

В чем разница?

Переменный ток отличается от постоянного, рядом физических явлений. Далее они рассматриваются подробно.

Поверхностный эффект (скин-эффект)

Понять явление скин-эффекта поможет следующая логическая цепочка:

  1. движение заряженных частиц в проводнике всегда сопровождается возникновением магнитного поля с полярностью и индукцией, зависящими, соответственно, от направления и силы тока. Магнитное поле аккумулирует в себе часть электрической энергии;
  2. ток с трансформацией силы и направления, соответственно, формирует изменяющееся (переменное) магнитное поле;
  3. согласно закону электромагнитной индукции, изменяющийся магнитный поток формирует в проводнике, пересекаемом его силовыми линиями, ЭДС. Это относится и к проводнику, пропускающему данный ток. При этом ЭДС направлена против вызывающей ее силы, то есть против переменного тока.

То есть переменный ток вызывает в проводнике противоЭДС, причем она возрастает к центру проводника, где концентрация силовых линий поля выше. В результате, носители заряда вытесняются на поверхность, отчего эффект и получил название «поверхностный».

Чем меньше активная площадь поперечного сечения, тем больше препятствий приходится преодолевать одному и тому же количеству заряда. Следовательно, скин-эффект выражается в увеличении сопротивления проводника. Действительно, опытным путем можно установить, что сопротивление проводника постоянному току всегда ниже, чем переменному с тем же действующим значением.

Фото 4

Скин-эффект в проводнике

Применяют следующие меры борьбы со скин-эффектом:

  • используют проводники в виде трубы или плоской ленты;
  • покрывают провода металлами с максимальной проводимостью — серебром и золотом;
  • используют вместо монолитного проводника систему из нескольких изолированных жил (литцендрат).
Применение трубчатого проводника позволяет пустить внутри него охлаждающую жидкость.

Индуктивность

Индукция сформированного током магнитного поля зависит от конфигурации проводника. Если он смотан в катушку, возникает более сильное поле, чем в случае с прямым проводником.

Фото 5 Соответственно, наводимая им противоЭДС получается сравнительно большой. Таким образом, катушка (дроссель, обмотка трансформатора или двигателя) оказывает сопротивление переменному току.

В противоположность активному сопротивлению, индуктивное называют реактивным.

В каждом полупериоде переменный ток тратит часть энергии на преодоление этого сопротивления и создание магнитного поля противоположной полярности. Такие потери называют реактивной мощностью. На постоянный ток индуктивность тоже влияет, но только в момент подачи питания в цепь, когда сила тока нарастает от нуля до номинального значения.

Проводимость цепи с конденсатором и емкостное сопротивление

Через цепь с включенным в нее конденсатором постоянный ток не течет, поскольку она фактически разомкнута: между обкладками конденсатора имеется заполненный диэлектриком промежуток.

Фото 6

Конденсатор в цепи переменного тока

Переменный же ток цепь проводит, при этом конденсатор работает так:

  • в 1-м полупериоде: при возрастании силы тока заряжается, при уменьшении — разряжается;
  • во 2-м полупериоде: снова заряжается и разряжается, но с обратным знаком.

Разряжаясь, конденсатор, подобно магнитному полю индуктивной катушки, отдает в цепь накопленную энергию, тем самым как бы препятствуя снижению силы тока. То есть при протекании переменного тока имеет место еще одна форма реактивного сопротивления — емкостное.

Сравнение достоинств

Постоянный ток повышает качество работы приборов, потому электроника функционирует именно на этой разновидности электричества. Также и сварка постоянным током получается более качественной.

Но и у переменного тока есть преимущества, побудившие строить энергосистему на нем:

Фото 7

  1. простота конструкции и низкая стоимость генераторов;
  2. возможность преобразования напряжения при помощи простых устройств — трансформаторов. Это позволяет повышать напряжение для передачи по ЛЭП, а в распределительных сетях снижать его до 220 В. Поскольку мощность тока определяется формулой W = U * I, то с возрастанием напряжения пропорционально уменьшается сила тока, а значит и потери в ЛЭП (выделяемое тепло кратно квадрату силы тока Q = I2 * R);
  3. простая конструкция и низкая стоимость преобразователей переменного напряжения в постоянное. Устройства для обратного преобразования имеют более сложную конструкцию и низкий КПД;
  4. возможность 3-фазного электроснабжения. Напряжение в каждой фазе по-прежнему составляет 220 В, но между фазами получается более высокое напряжение — 380 В.

Достоинства 3-фазного электроснабжения:

  • уменьшение размеров двигателей и трансформаторов;
  • изменение мощности электроприемника путем соединения обмоток по разным схемам — «звезда» или «треугольник»;
  • возможность менять направление вращения асинхронного электродвигателя;
  • отсутствие мерцания у люминесцентных светильников (отдельные лампы подключаются к разным фазам).
Фото 8

Линии электропередач работают на постоянном токе

Тем не менее, ЛЭП, передающие значительные мощности на сверхдальние расстояния, работают на постоянном токе, причины следующие:

  • отсутствие скин-эффекта, благодаря чему предельная мощность не зависит от длины линии и превосходит предельной мощности для линии переменного тока;
  • возможность связки систем, работающих на разных частотах.
Для линии на постоянном токе понятия потери статической устойчивости вообще не существует.

Направление движения

Фото 9Ток направлен в ту сторону, в которую движутся положительно заряженные частицы. А перемещаются они от положительного полюса источника к отрицательному. Данное правило незыблемо даже для тех случаев, когда свободные заряженные частицы переносят только отрицательный заряд (например, электроны в металлических проводниках).

Ток все так же считается направленным от «плюса» к «минусу», хотя на самом деле носители заряда движутся в противоположном направлении.

Частота

Число циклов изменения параметров переменного тока за единицу времени называется частотой. Частота переменного тока в электросети составляет 50 Гц, то есть за одну секунду он совершает 50 колебаний, каждое из которых состоит из двух полуволн синусоиды.

С повышением частоты наблюдаются следующие явления:

  1. снижается опасность переменного тока для организма. На заре прошлого века ученый-изобретатель Н. Тесла проводил публичные опыты, в ходе которых пропускал через себя ток напряжением в миллионы вольт (держал за цоколь лампу и она при этом светилась). Ток не причинял вреда потому, что его частота исчислялась в мегагерцах. Частота в 50 Гц принята для сетевого тока по техническим причинам. При такой частоте ток для организма крайне опасен;
  2. уменьшаются габариты трансформаторов. Данное обстоятельство помогло существенно сократить размеры сварочных аппаратов. Современные модели оснащены инвертором (их так и называют — инверторные) — особой схемой, повышающей частоту тока с 50 Гц до 80 кГц. В результате требуется намного меньший трансформатор, к тому же потери в нем существенно снижаются.

Однако, с увеличением частоты сильнее проявляется поверхностный эффект.

Видео по теме

О разнице между постоянным и переменным током в видео:

Как видно, изменение характера движения заряженных частиц приводит к целому ряду следствий, кажущихся малосведущему человеку весьма неожиданными.

Выясняется, к примеру, что переменный ток, считающийся более опасным, чем постоянный, может при относительно высоких напряжении и силе тока оказаться безвредным. И в наше время электричество продолжает удивлять ученых сюрпризами в виде новых необъяснимых пока явлений.


Поделиться:
Нет комментариев
×
Рекомендуем посмотреть
Adblock
detector