Сравнение удельного электрического сопротивления меди и других металлов
Общеизвестно, что наилучшими проводниками электричества являются металлы. Но нетрудно заметить, что в подавляющем большинстве случаев токопроводящие элементы изготавливают из меди. Объясняется это тем, что разные металлы отличаются электропроводимостью, а также другими свойствами. В данной статье обсудим удельное сопротивление меди и прочие особенности, делающие ее столь популярной.
Свойства меди
Востребованность меди в электротехнике обусловлена следующими положительными качествами:
- высокая электропроводимость;
- пластичность. Из меди делают тончайшие жилы и пластины с толщиной, исчисляемой микронами. Благодаря пластичности, она не обламывается при монтаже, выдерживая множество циклов сгибания-разгибания без развития усталостных явлений;
- распространенность и простота добычи. Это преимущество условно. Получение меди обходится дешевле серебра — единственного металла, превосходящего ее в электропроводимости. Но в сравнении с алюминием, а тем более со сталью, медь стоит гораздо дороже. Потому ее нередко заменяют этими материалами;
- антикоррозионные свойства;
- прочность. Благодаря ей, изделия из меди устойчивы к деформациям.
- материал легко поддается пайке и сварке.
Источником меди служит сульфидная руда. Для применения в электротехнике металл после плавки руды подвергают электролитической очистке, так что доля примесей в нем составляет 0,05-0,1% (высококачественная рафинированная медь марок М0 и М1, также называемая электролитической).
В процессе получения минимизируют воздействие кислорода на металл, иначе механические характеристики последнего ухудшаются.
Дешевле меди стоят сплавы на ее основе — латунь (с цинком) и бронза (с оловом или свинцом). Помимо олова или свинца, в бронзу могут добавлять бериллий (бериллиевая бронза), кадмий, кремний, фосфор, магний, хром.
Медь и ее удельное сопротивление
Способность твердого токопроводящего материала противодействовать постоянному (!) току, то есть однонаправленному движению заряженных частиц, определяется лишь расстоянием между атомами в его кристаллической решетке.
Значит, для любого материала можно определить некий параметр, характеризующий эту способность. Он называется удельным сопротивлением и обозначается литерой ρ.
Данный параметр конкретного материала означает омическое сопротивление изготовленного из него проводника длиной 1 м и с площадью поперечного сечения 1 мм2.
Омическим называют сопротивление постоянному току. Оно состоит лишь в трении движущихся заряженных частиц о структуру материала. Сопротивление переменному току называют активным и оно имеет более сложную природу.
Показатель ρ измеряется в Ом* мм2 / м, его значение для некоторых металлов приведены в таблице:
Материал | Удельное сопротивление при t = 200С,
Ом*мм2/м |
Медь | 0,0175 |
Серебро | 0,0160 |
Золото | 0,0240 |
Железо | 0,100 |
Алюминий | 0,0280 |
Свинец | 0,2100 |
Вольфрам | 0,0550 |
Как видно, по этому параметру медь уступает лишь серебру. Но стоимость последнего довольно высока, потому именно медь является наиболее предпочитаемым материалом в электротехнике.
С уменьшением температуры происходит обратный процесс: атомы колеблются менее интенсивно и электрическое сопротивление падает. С полупроводниками все обстоит наоборот: с ростом температуры сопротивление падает. Это объясняется увеличением числа свободных электронов.
При температурах, близких к абсолютному нулю, в металлах наблюдается явление сверхпроводимости: сопротивление становится равным нулю. Можно генерировать ток в металлическом кольце, и он будет течь без источника питания, то есть «по инерции», несколько лет (реальный факт).
В последнее время научились достигать сверхпроводимости и при гораздо больших температурах — 1300К и выше. Для достижения таких температур достаточно жидкого азота, а он стоит меньше молока. Объяснить сверхпроводимость при таких температурах слабым колебанием атомов нельзя и ученые пока не знают, чем она вызывается.
Все «теплые» металлические сверхпроводники имеют слоистую структуру, потому предполагают, что электроны находят свободные пути в промежутках между слоями.
Самая высокая температура сверхпроводимости, достигнутая на сегодняшний день, составляет -700С (2030К). Материал — сероводород под давлением в 1,6 млн. атм. Такой сверхпроводник работает в Антарктиде.
Изменение ρ в зависимости от температуры характеризуется температурным коэффициентом сопротивления (ТКС). Зная ρ материала, можно вычислить R омическое любого изготовленного из него проводника, независимо от размеров и формы поперечного сечения.
Формула расчета: R = (ρ * L)/S, где: L — длина проводника, м; S — площадь поперечного сечения проводника, мм2. Чем длиннее проводник, тем сопротивление выше. А чем больше площадь его поперечного сечения, тем оно ниже.
Все логично: с ростом длины возрастает количество препятствий, которые свободным электронам приходится преодолевать; если же увеличить сечение, то большее число электронов сможет пройти через него, соответственно, сопротивление снизится.
Если, к примеру, имеется медный проводник длиной 10 м с площадью сечения 2,5 мм2, то его сопротивление постоянному току будет равно: R = 0,0175 * 10 / 2,5 = 0,07 Ом.
Не имеет значения, круглый это проводник или плоский, лишь бы площадь поперечного сечения составляла 2,5 мм2. Поскольку металлы имеют крайне незначительное сопротивление, для его измерения используют специальные приборы — микроомметры. Их чувствительность достигает 0,1 микроома (мкОм). Микроомметрами замеряют сопротивление контактов, обмоток и пр.
При протекании переменного тока
При протекании переменного тока все обстоит иначе.
Нельзя выделить постоянное удельное сопротивление, поскольку противодействие движению зарядов распределено неравномерно и зависит от ряда факторов:
- размеры сечения проводника;
- его геометрия;
- частота переменного тока;
- его сила.
Дело в том, что создаваемое переменным током магнитное поле также является переменным, а переменное магнитное поле, согласно закону электромагнитной индукции, создает в проводниках ЭДС. Это относится и к проводнику, по которому течет ток.
Возникающая в нем ЭДС направлена вопреки создающей ее силы, то есть против тока, потому ее называют «противоЭДС». Распределена она неравномерно: к центру проводника, где силовых линий магнитного поля больше, она возрастает, а в направлении к наружным слоям — убывает.
В результате ток вытесняется на периферию и вместо всего сечения проводника для передачи тока задействуется только часть его. А с уменьшением площади сечения проводника, как было описано выше, возрастает сопротивление. Данное явление называют «поверхностным эффектом» или «скин-эффектом».
Удельное сопротивление некоторых веществ
Некоторые металлы, уступая меди в проводимости, превосходят ее по другим свойствам. Поэтому они также применяются в электротехнике.
Алюминий
Удельное сопротивление данного металла составляет 0,028 Ом*мм2/ м. Также он уступает меди в пластичности: нельзя получать тонкие провода, после нескольких сгибов ломается.
Но есть и важные достоинства:
- низкая стоимость. Объясняется большей, в сравнении с медью, распространенностью;
- малый вес. Легче меди в 3,5 раза. Это важно при прокладке воздушных ЛЭП: уменьшается нагрузка на опоры;
- коррозионная стойкость: на воздухе покрывается оксидной пленкой, защищающей от разрушения.
В электротехнике применяют алюминий отличающихся степенью очистки, марок:
- АВ0000 — самый чистый, доля примесей не превышает 0,004%: применяется редко, для исследовательских и прочих специфических задач;
- АВ00 — примесей до 0,03%: изготавливают фольгу, электродную продукцию, электролитические конденсаторы;
- А1 — примесей не более 0,5%: кабели, клеммы и пр.
В первую очередь стремятся сократить содержание в алюминии химических элементов, способствующих возрастанию удельного сопротивления – таллия и марганца. Никель, цинк и кремний на этом параметре почти не отражается.
Железо
Железо применяется не в чистом виде, а как сплав с углеродом — сталь.
Удельное сопротивление и железа в чистом виде, и стали очень высоко (0,1 Ом*мм2/ м), но и этот материал нашел применение в электротехническом производстве благодаря своим достоинствам:
- низкая стоимость: железо — самый распространенный и дешевый металл;
- прочность, деформационная стойкость;
- пластичность.
Недостаток стали — подверженность коррозии. С этим борются при помощи нержавеющих покрытий — цинкового или медного.
Натрий
Сложный в эксплуатации металл с относительно высоким удельным сопротивлением (0,047 Ом*мм2/ м), но считается перспективным для использования в электротехнике из-за следующих достоинств:
- широкое распространение: получают из расплава поваренной соли (NaCl) путем электролиза. Это сырье присутствует на планете практически в неограниченных количествах;
- малый вес: легче меди в 9 раз, что позволяет изготавливать сверхлегкие провода.
Сложность в эксплуатации обусловлена следующими свойствами:
- мягкость. Натрий крайне податлив, потому провода из него нуждаются в жесткой оболочке;
- химическая активность. Стремительно окисляется на воздухе и бурно реагирует с водой, даже в виде пара (также содержится в воздухе). Из-за этого оболочку натриевого провода требуется делать герметичной.
Видео по теме
О температурной зависимости сопротивления металлов в видео:
Среди металлов медь занимает второе место по электропроводимости, уступая только гораздо более дорогому серебру. Потому в электротехнике ее применяют очень широко, в частности, при устройстве домашней электропроводки.
Но в прежние времена проводку изготавливали из более дешевого алюминия и в старых домах такой кабель еще часто встречается.
Владельцу важно знать, что непосредственный контакт алюминиевого и медного проводников недопустим: металлы разрушаются из-за электрохимической реакции. Соединение осуществляют посредством специальных переходников.