Что такое вихревые токи Фуко: природа возникновения и применение

Фото 1

Электромагнитная индукция (ЭИ) — очень важное явление для электротехники.

И почти всегда электромагнитную индукцию сопровождают вихревые токи.

Что они из себя представляют и как используются — вот тема данного разговора.

Природа вихревых токов

Фото 2Вихревые токи имеют ту же природу, что и ток во вторичной обмотке трансформатора — все это индукционный ток.

Они обусловлены явлением ЭИ, открытым М. Фарадеем: при изменении магнитного потока, пересекающего проводник, в последнем возникает электродвижущая сила (ЭДС).

Если этот проводник — катушка из провода (обмотка трансформатора или электрогенератора), то ток течет по ее виткам.

Что такое токи Фуко?

В массивном теле, например, сердечнике (магнитопроводе) или корпусе агрегата, возникает объемный ток в виде движения заряженных частиц по круговым (вихреобразным) траекториям. Это называют вихревыми токами.

Изменение пересекающего проводник магнитного потока наблюдается в двух случаях:

Фото 3

  1. проводник и поле постоянного магнита двигаются друг относительно друга. Пример: сердечник ротора электрогенератора, в котором статор является магнитом (во многих видах магнит — ротор);
  2. относительное движение отсутствует, но меняются параметры магнитного поля. Для реализации такого варианта применяется электромагнит (смотанный в катушку провод), по которому пропускается переменный ток. Так же как и ток, поле будет периодически менять направленность силовых линий и интенсивность магнитного потока (в противофазе с током). Пример: магнитопровод трансформатора.

Это явление называют «токами Фуко» — в честь ученого Ж. Б. Л. Фуко, проведшего большую работу по их изучению. Первым же обнаружил данное явление французский ученый Д. Ф. Араго, проводивший в 1824-м году опыт с медным диском и вращающейся над ним магнитной стрелкой. Диск тоже начинал совершать аналогичные действия. Этот эффект стали называть в научных кругах «явлением Араго».

Фото 4

Магнитное поле токов Фуко

Исследователь не смог правильно объяснить механизм вращения, это сделал несколькими годами позже М. Фарадей, открыв ЭИ:

  1. плоский круглый предмет помещается в крутящееся магнитное поле;
  2. его воздействие на деталь выражается в наведении в ней вихревых токов;
  3. токи Фуко, в свою очередь, вступают во взаимодействие с магнитным полем;
  4. диск начинает крутиться.
Сила вихревых токов напрямую зависит от скорости изменения магнитного потока.

Значение

Чем быстрее движется проводящее тело в поле, тем сильнее будут токи Фуко. Частота переменного тока и его амплитуда при возрастании тоже способствуют их увеличению.

При воздействии на проводящее тело электромагнитом с переменным током, вихревые токи возрастают с увеличением частоты тока и его амплитуды. Направление вращения «вихря» определяется аналогичным параметром магнитного потока. Если последний возрастает, то есть скорость его изменения положительна (dФ / dt > 0), вихревые токи вращаются по часовой стрелке.

При убывании магнитного потока (dФ / dt < 0) направление вращения меняется на противоположное. «Вихрь» зарядов в теле выбирает такую плоскость вращения, чтобы оказывать максимальное сопротивление вызывающей их силе (правило Ленца). Эта плоскость составляет прямой угол с силовыми линиями индуцирующего поля.

При этом вихревые токи сами генерируют магнитное поле, направленное против вызывающего их внешнего (индуцирующего) магнитного поля. В этом и состоит механизм взаимодействия токов Фуко с индуктором, заставившее вращаться диск в опыте Араго.

Применение

Исследуя вихревые токи, Ж. Б. Л. Фуко обнаружил, что они вызывают нагрев проводника. Это явление широко используют в технике и различных отраслях промышленности.

Вот несколько примеров:

Фото 5

  1. индукционная кухонная плита. Достоинство устройства состоит в экономичности: энергия тратится сугубо на нагрев посуды с пищей, сама плита остается холодной. Требуется посуда из ферромагнитных материалов, то есть таких, к которым пристает магнит. Существуют такие разновидности чугуна и нержавейки, алюминиевую же посуду делают с ферромагнитным дном;
  2. индукционный отопительный котел. Достоинства – в простоте устройства. Теплообменник представляет собой трубу (в некоторых моделях — с сердечником), обмотанную проводом. Целостность его не нарушается, как в ТЭНовых котлах, потому протечки исключены. Поверхность нагрева имеет большую площадь: в этом качестве выступает весь теплообменник (находится в поле электромагнита);
  3. индукционные печи на металлургических и прочих заводах. Сталь и другие металлы загружаются в тигель и помещаются в поле переменного магнита. Выгода в том, что энергия тратится сугубо на нагрев материала, а не тигля;
  4. дегазация металлических частей вакуумных установок. Без данной процедуры достижение полного вакуума невозможно, поскольку в арматуре и других металлических элементах содержится небольшое количество газов, в условиях вакуума понемногу выделяющихся. Для принудительной дегазации требуется нагрев, а нагреть находящийся внутри установки металлический элемент можно только бесконтактным способом. На помощь приходят ЭИ и токи Фуко;
  5. поверхностная закалка металлических изделий. Требуется для упрочнения внешнего слоя при сохранении пластичности основной части детали. Пример — шестерни. Если закалить изделие полностью, оно станет хрупким и при нагрузках сломается.
Фото 6

Вихревые токи в магнитопроводе

Чтобы нагреть только поверхностный слой, токи Фуко используют в сочетании со скин-эффектом. Последний состоит в снижении плотности тока вблизи оси проводящего тела и возрастании ее у поверхности, что проявляется тем сильнее, чем выше частота тока.

Объясняется скин-эффект тем, что вектор напряженности создаваемого вихревыми токами поля направлен:

  • внутри детали — против наведенной (индуцированной) ЭДС;
  • на поверхности — в одну сторону с ней.

Скин-эффект имеет место и при протекании сгенерированного электростанцией высокочастотного тока по проводам. При этом сопротивление последних значительно увеличивается, поскольку работает только поверхностный слой.

Фото 7Для борьбы используют такие меры:

  • применяют плоские и полые проводники;
  • наносят на поверхность токопроводящих жил металлы с меньшим сопротивлением (серебро, золото);
  • уменьшают шероховатость проводника (сокращается путь тока в поверхностном слое).

Другой способ применения основан на взаимодействии вихревых токов с вызывающим их магнитным полем.

Как уже говорилось, индукционный ток выбирает такой путь, чтобы производимое им магнитное поле максимально противодействовало индуцирующему (правило Ленца). В результате на движущееся в магнитном поле тело с низким электрическим сопротивлением (сила вихревых токов, как и всех остальных, обратно пропорциональна сопротивлению), действует тормозящая сила.

Тормозящая силу используют для:

  • торможения диска электросчетчика (повышается точность показаний);
  • демпфирования подвижных частей сейсмографов, гальванометров и прочих приборов;
  • торможения железнодорожных составов (в некоторых конструкциях).
Фото 8

Вихретоковый метод (

На взаимодействии индуцирующего электромагнитного поля и создаваемого токами Фуко основан вихретоковый метод контроля деталей из проводящих материалов — металлов и их сплавов, полупроводников, графита. Метод является не только неразрушающим, но и бесконтактным. Это позволяет значительно увеличить скорость продвижения исследуемых изделий.

Суть метода:

  1. деталь помещается в переменное магнитное поле, генерируемое одной или несколькими индукционными обмотками (вихретоковым преобразователем);
  2. создаваемое токами Фуко поле анализируется измерительной катушкой.

Сопротивление материала увеличится, если в изделии имеются:

Фото 9

  • трещины;
  • раковины;
  • утоньшение стенки;
  • коррозия и прочие дефекты, нарушающие однородность.

Вихревые токи и создаваемое ими электромагнитное поле будут отличаться от нормы, эта информация, как и данные о положении исследуемого объекта относительно вихретокового преобразователя, определяется путем замеров на выводах катушек:

  • напряжения;
  • сопротивления.

Методом проверяют состояние широкого спектра изделий:

  • крепежных элементов;
  • роликов подшипников;
  • труб;
  • проволоки;
  • рельс;
  • корпусов атомных реакторов и многих других.
Фото 10

Дефектоскопия газопровода

Помимо дефектоскопии и дефектометрии метод вихретокового контроля используется в:

  • виброметрии;
  • толщинометрии (контроль вибраций);
  • структуроскопии (определение структурного состояния материала).
При протекании постоянного тока скин-эффект не наблюдается, потому его иногда используют для транспортирования большой мощности на значительные расстояния.

Потери на вихревые токи

С целью поспособствовать распространению электромагнитного поля, обмотки трансформаторов и электрических машин наматывают на сердечник (магнитопровод). Это объясняется более высоким коэффициентом магнитопроницаемости металлов в сравнении с воздухом.

К примеру, у стали этот параметр в 100 раз превышает воздушный. В сердечнике также возникают вихревые токи и здесь они нежелательны, поскольку потребляют энергию и приводят к снижению КПД устройства.

Применяют следующие способы минимизации потерь на вихревые токи:

  1. шихтовка. Сердечник собирают из тонких пластин (0,1 – 0,5 мм), электрически изолированных друг от друга лаком, окалиной или иным диэлектриком. Плоскость пластины направлена вдоль силовых линий поля. Поэтому для токов Фуко, стремящихся двигаться в перпендикулярной этим линиям плоскости, такой сердечник имеет большое сопротивление. Аналогичными свойствами обладает стержень, собранный из изолированных друг от друга отрезков отожженной проволоки. Но они должны располагаться параллельно направлению магнитного потока (силовым линиям). Таким же способом ослабляются токи Фуко в проводах — их набирают из множества переплетенных изолированных жил (литцендрат). Заодно данный прием нейтрализует скин-эффект;
  2. изготовление сердечников из ферритов — магнитомягкое железо, получаемое путем спекания порошка. Структурно и по свойствам напоминает графит (такое же хрупкое). Имеет низкое электрическое сопротивление, но высокий коэффициент магнитопроницаемости (магнитодиэлектрик). Сердечник из феррита в шихтовке не нуждается — его делают цельным;
  3. введение в материал сердечника добавок, повышающих электрическое сопротивление. Так, в сталь добавляют кремний.

Видео по теме

О том, что такое вихревые токи, в видеоролике:

В массивных телах, попавших под воздействие переменного магнитного поля, происходит тот же процесс, что и в любом проводнике — возникает электрический ток. В некоторых случаях он полезен, в других — нежелателен. Так или иначе, на явлении вихревых токов построена работа многих устройств.


Поделиться:
Нет комментариев
×
Рекомендуем посмотреть
Adblock
detector