Закон Ома для участка цепи — формула и единицы измерения
Эмпирический физический закон Ома для участка цепи установил Georg Simon Ohm почти два столетия назад, и получил название в честь этого знаменитого физика из Германии.
Именно этим законом определяется связь, которая возникает между электродвижущей силой источника, силой электротока и показателями сопротивления внутри проводника.
Классическая формулировка
Весь объём прикладной электротехника базируется на физическом законе Ома и представлен двумя основными формами:
- учacтoк электрoцепи;
- пoлнaя электрoцепь.
В классическом виде формулировка такого закона очень хорошо известна всем ещё со школьной скамьи: сила тока в электрической цепи является прямо пропорциональной показателям напряжения, а также обладает обратной пропорциональностью показателям сопротивления.
Интегральная форма такого закона следующая: I = U / R, где
- I – показатель силы тока, который проходит через участок электроцепи при показателях сопротивления, обозначаемых R;
- U – показатель напряжения.
Сопротивление или «R» принято считать наиболее важной характеристикой, что обусловлено зависимостью от таких параметров проводника.
Закон Ома для неоднородного участка цепи
Участок любой электрической цепи является неоднородным, если в него подключен источник электродвижущей силы. Таким образом, в этой электроцепи отражается воздействие посторонних сил.
I=ϕ2-ϕ1+ℰ/R+r, где
- I — обозначение силы тока;
- ϕ1 — обозначение пoтeнциaлa точки «A»;
- ϕ2 — обозначение пoтeнциaлa точки «B»;
- ℰ — показатели электродвижущей силы источника электрического тока в вольтах;
- R — обозначение сопротивления участка;
- r — внутреннее сопротивление источника тока.
Для стандартных неоднородных участков характерным является наличие некоторой разницы потенциалов на концевой части электроцепи, а также внутренних скачков потенциалов.
В последние годы индукционный счетчик электроэнергии выходит из обращения и заменяется более новыми моделями. Однако, такие приборы учета все же используются. В статье рассмотрим, как правильно установить индукционный счетчик.
Сколько можно эксплуатировать электросчетчик по закону и кто должен его менять, читайте далее.
В некоторых случаях выгодно использовать счетчик день-ночь. В каких случаях выгодны двойные тарифы и как снимать показания, расскажем в этой теме.
Закон Ома для участка цепи
Согласно закону, сила тока на участке электрической цепи имеет прямую пропорциональность уровню напряжения и обратную пропорциональность электрическому сопротивлению на данном участке.
Например, если проводник обладает сопротивлением в 1 Ом и током в 1 Ампер, то его концах напряжение составит 1 Вольт, что означает падение напряжения или U = IR.
Если концы проводника обладают напряжением в 1 Вольт и током в 1 Ампер, то показатели сопротивления проводника составят 1 Ом или R = U/I
Закон Ома для участка цепи с ЭДС
ЭДС или электродвижущая сила является физической величиной, определяющей отношение посторонних сил в процессе перемещения заряда в сторону положительного полюса источника тока к величине данного заряда:
- ε = Acт / q
- ε – электродвижущая сила;
- Acт — работа сторонних сил;
- q – заряд;
Единица измерения электродвижущей силы – В (вольт)
Аналитическое выражение закона для участка цепи с источником электродвижущей силы следующее:
- I = (φa — φc + E) / R = (Uac + E) / R;
- I = (φa — φc — E) / R = (Uac — E) / R;
- I = E /(R+ r), где
- Е – показатели электродвижущей силы.
Электрический ток в этом случае представляет собой алгебраическую сумму, полученную при сложении показателей напряжения на зажимах с показателями электродвижущей силы, разделенной на показатели сопротивления.
Внутри источника электрического тока положительный заряд переносится в сторону большего потенциала с разделением зарядов на положительные и отрицательно заряженные частицы.
Закон Ома для участка цепи без ЭДС
Нужно учитывать, что для участка цепи, не содержащего источника электродвижущей силы, устанавливается связь, возникающая между электрическим током и показателями напряжения на данном участке.
I = Е / R
Согласно данной формуле, сила тока имеет прямую пропорциональность напряжению на концах участка электрической цепи и обратную пропорциональность показателям сопротивления на этом участке.
Источник электродвижущей силы
Благодаря внешним характеристикам ЭДС определяется степень зависимости показателей напряжения на зажимах источника и величины нагрузки.
Например, U= E-R0 х I, в соответствии с двумя точками: I=0 E=U и U=0 E=R0I.
Идеальный источник электродвижущей силы: R0=0, U=E. В этом случае величина нагрузки не оказывает воздействия на показатели напряжения.
Эмпирический физический закон Ома для полной цепи определяет два следствия:
- В условиях r < < R, показатели силы тока в электрической цепи являются обратно пропорциональными показателям сопротивления. В некоторых случаях источник может являться источником напряжения.
- В условиях r > > R, свойства внешней электрической цепи или величина нагрузки не оказывают влияния на показатели сила тока, а источник может назваться источником тока.
Электродвижущая сила, находящаяся в условиях замкнутой цепи с электрическим током, чаще всего равна: Е = Ir + IR = U(r) + U(R)
Принятые единицы измерения
К основным, общепринятым единицам измерения, которые используются при выполнении любых расчётов, касающихся закона Ома, относятся:
- отражение показателей напряжения в вольтах;
- отражение показателей тока в амперах;
- отражение показателей сопротивления в омах.
Любые другие величины перед тем, как приступить к расчётам, необходимо в обязательном порядке перевести в общепринятые.
Важно помнить, что физический закон Ома не соблюдается в следующих случаях:
- высокие частоты, сопровождающиеся значительной скоростью изменений электрического поля;
- при сверхпроводимости в условиях низкотемпературных режимов;
- в лампах накаливания, что обусловлено ощутимым нагревом проводника и отсутствием линейности напряжения;
- при наличии пробоя, вызванного воздействием на проводник или диэлектрик напряжения с высокими показателями;
- внутри вакуумных источников света и электронных ламп, заполненных газовыми смесями, включая люминесцентные осветительные приборы.
Такое же правило распространяется на гетерогенные полупроводники и полупроводниковые приборы, характеризующиеся наличием p/n-переходов, включая диодные и транзисторные элементы.
Чем точнее счетчик измеряет затраченную электроэнергию, тем лучше. Класс точности электросчетчика отражает возможную погрешность прибора учета.
О такой величине как коэффициент трансформации счетчика электроэнергии, поговорим в этом материале.
Видео на тему