Как происходит пуск двигателя постоянного тока
Пуск двигателя постоянного тока имеет ряд отличительных особенностей.
Объясняется это большим значением пускового тока, которое необходимо предварительно ограничить.
Если этого не сделать, то может повредиться внутренняя цепь обмотки якоря.
Существует несколько способов запуска: прямой, реостатный и метод плавного повышения питающего напряжения.
Что происходит при пуске двигателя
По мере нарастания токовой нагрузки на обмотке статора увеличивается крутящий момент электродвигателя, который через вал передается на его подвижную часть – ротор. Чем быстрее возрастает крутящий момент, тем сильнее разогревается обмотка статора.
- выходу из строя изоляции;
- возникновению вибраций;
- деформации механических частей двигателя;
- полному выходу из строя мотора.
Большой ток может вызвать бурное искрение под щетками, что приведет к выходу из строя коллектора.
Прямой пуск
Данный метод основан на прямом подключении якорной обмотки к электрической сети при номинальном напряжении двигателя. Прямой пуск можно применять только в случае наличия стабильного питания мотора, жестко связанного с приводом.
Этот способ является одним из самых простых. Температура при прямом пуске повышается, по сравнению с прочими способами, незначительно.
Метод прямого пуска наиболее предпочтителен при отсутствии специальных ограничений на ток, поступающий от электросети.
Если электродвигатель работает в режиме частых запусков и отключений, его необходимо снабдить простейшим оборудованием. Его роль может выполнять расцепитель с ручным управлением. Напряжение в этом случае подается на клеммы электромотора.
Прямой пуск можно применять только на маломощных двигателях, поскольку пик нагрузки а крупных моделях может превышать номинальную нагрузку в 50 раз.
Реостатный пуск
Метод пригоден для запуска оборудования большой мощности. Процесс осуществляется следующим образом:
- Из провода, разделенного на секции и имеющего высокое удельное сопротивление, изготавливается реостат.
- Устанавливается ток возбуждения на уровне номинального значения.
- Во время запуска последовательно уменьшается сопротивление реостата, исключая таким образом скачки электрического тока.
Включение в схему реостата обеспечивает безопасность запуска двигателей самой высокой мощности.
При реостатном пуске разгон двигателя происходит постепенно с постоянным ускорением. Количество ступеней реостата зависит от требований к плавности запуска мотора и разности
Imax – Imin.
Значения их сопротивлений определяется расчетом. В среднем пусковые реостаты имеют 2-7 ступеней.
Процесс переключения пускового реостата практически не поддается автоматизации. Если это необходимо (например, в автоматизированных установках), применяются пусковые сопротивления, поочередно шунтируемые контактами контакторов, работающих автоматически.
Как только двигатель войдет в рабочий режим, сопротивление реостата необходимо полностью вывести, поскольку рассчитывается оно только на кратковременную работу. Если ток будет проходить через реостат длительное время, он просто выйдет из строя.
Уменьшается сопротивление тоже ступенчато.
Пуск путем плавного повышения питающего напряжения
В обмотках двигателей насосов, конвейеров, воздуходувок в момент запуска возникают повышенные токи, превышающие их номинальное значение в 6 раз. Это явление отрицательно сказывается на составных частях мотора, снижая их долговечность. Поэтому в электрооборудовании мощностью свыше 1 кВт используют плавный пуск.
Смысл данного способа заключается в следующем: питающее напряжение повышается постепенно до тех пор, пока двигатель не выйдет на рабочий режим. Регулировка производится при помощи тиристоров или симисторов. Они располагаются «спина к спине» и устанавливаются на каждой из питающих линий переменного тока.
Приводятся в действие тиристоры на начальном этапе, причем их включают последовательно с небольшой задержкой для каждого полупериода. Такая схема работы способствует эффективному наращиванию напряжения (среднего переменного) на электродвигателе вплоть до его выхода на номинальное напряжение электросети.
Как только мотор достигнет номинальной скорости вращения, его можно переключить напрямую по схеме байпас.
Управление большими двигателями осуществляется посредством установок плавного пуска или частотных преобразователей.
Но эти устройства с успехом заменяют:
- выключателями;
- разъединителями полного напряжения.
Последний подает полное напряжение на клеммы электродвигателя (принцип прямого пуска). Но такая схема возможна только на маломощных электроустановках.
Существуют и другие мягкие пускатели, обеспечивающие плавную остановку двигателя. Они необходимы в устройствах, которые при резком снижении скорости вращения могут привести к их поломке или нарушениям разного характера. В качестве примера можно привести насос, быстрая остановка которого вызовет возникновение гидроудара в системе. Нежелательна резкая остановка конвейерных лент, в результате которой полотно может выйти из строя.
Особенности плавного пуска трехфазных двигателей
На электродвигателях данного типа применяется мягкий пуск «звезда-треугольник». Схема работает следующим образом:
- изначально обмотки мотора соединены звездой;
- при выходе двигателя на заданные параметры они переключаются в соединение треугольником.
В схему устройства входят:
- контакторы на каждую фазу;
- таймера, задающего интервал времени;
- реле перегрузки.
Такой способ позволяет держать пусковой ток на уровне 30% от его значения при прямом пуске. Соответственно, и крутящий момент ниже – не более 25%.
Но чрезмерно нагруженное электрооборудование разогнать до номинальной скорости не удастся из-за недостаточного крутящего момента.
Устройства плавного могут играть роль регулятора напряжения электродвигателя, если в схеме присутствует соответствующий контроллер. Его задача – отслеживать коэффициент мощности мотора. Зависит он от нагрузки: при ее небольшом значении контроллер понизит напряжение и ток электродвигателя.
Пуск при пониженном напряжении цепи якоря
Обмотка возбуждения питается от другого источника с полным напряжением, обеспечивающим полный пусковой ток.
Такой способ используется для запуска мощных двигателей с регулируемой скоростью вращения.
Реверсирование (изменение направления вращения) выполняется путем изменения направления тока в обмотке возбуждения или якоре.